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» Problem: Especially in the medical imaging domain, deep learning from limited labeled data lacks generalizability and explainability. MC"U (cross-domain)
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» Goal: Improve model generalizability in semi-supervised multi-task learning, while preserving explainability.

» MultiMix: A novel, semi-supervised, multi-task learning model for the joint classification and segmentation of medical images, leveraging consistency
augmentation and a saliency bridge module.

» Code: https://github.com/ayaanzhaque/MultiMix

Segmentation

with strongly augmented versions of the images.
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module (Fig. 2) for improved segmentation.
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Figure 5: Visualizations of the segmented lung masks output
by MultiMix-50-1000 on the in-domain JSRT dataset and cross-
domain MCU dataset. The results show good agreement be-
tween the groundtruth and predicted masks.
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Figure 1: Schematic of the proposed MultiMix model.

Figure 4: Boundary visualization of the predicted segmentations in
a chest X-ray affirms the superiority of MultiMix. Color code: green
(reference), red (predicted).
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Figure ©: Sallency maps (from MultiMix-50-1000) based on the classification gradients of images on both the classification (left) and
segmentation (right) datasets show highlighted Iungs and visualizations. These maps hold information from the encoder that is |mportant
for segmentation.

Maximize Gradients

256x256x1

Collect Gradients
Input Image

Collect Gradients
Bridge

» Classification loss:
Lc = L&, ) + ALy(E, argmax(E,) > t)
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» Segmentation loss:
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Figure 2: Proposed saliency bridge: Classification predictions are taken and saliency maps are produced through gradient maxi-
mization. They are then concatenated with the input images.
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Table 1: Details of the datasets used for training and testing.
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MOde Dataset Total Normal Abnormal Train Val Test >< Er_:'EEIééﬁ%ﬁgﬂgg;gﬂéééééégééié 55 g|:_:gggg;é;ﬁégﬁggéi%ééééééég% NumberofCIzzlssificationLabels Number of Classification Labels

JSRT 47 - B 111 13 123 v :%:vé%gégg%géggg;g;g;g; D%DD%D%%%%%%%%%E;ZE;Z;E; Figure.8: Classi_flcation accuracies o_f differer?t supervised a?nd semi-

in-domain ~ c 7. Distribut: € ihe D . ) supervised baselines at different training datasizes shows the improved
CheX 5,850 1583 4273 5216 16 624 igure [ Distributions of the Lice scores demonstrate the segmen- . ,qictency and accuracy of MultiMix.

tation superiority of the MultiMix model over the baseline models.
. MCU 133 — — 93 10 35
cross-domain
NIHX 4185 2754 1431 - — 4185
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Figure 3: Example images from the CheX and NIHX datasets.

In Advances in Neural Information Processing Systems, volume 33, pages 596—608, 2020.



